
www.nec-labs.com

Deep Learning with Vector Processor

Hans Peter Graf

June 21, 2018

2

NEC’s Machine Learning Platform: RAPID
Application Templates: Inspection, Time series analysis, Surveillance, Risk Analysis

Next release: RAPID 2.2, July 2018

Fast, light weight, high precision

CPU, GPU, soon: VECTOR

Bring the algorithms to the data!

YouTube video: https://www.youtube.com/watch?v=sFfJngldFJs

https://www.youtube.com/watch?v=sFfJngldFJs

3

Commercial Applications

System for Spoof Detection at Tokyo
Stock Exchange
Introduced March 2018
https://jpn.nec.com/press/201803/20180319_02.html

System identifies trading patterns that indicate
illegal activities. This reduces drastically the amount
of trades that have to be checked by experts.

System for Unsupervised Defect
Detection on Manufactured Objects

Introduced June 2017
http://jpn.nec.com/press/201706/20170621_04.html

This system can be applied for a wide range of
inspection tasks for quality control of manufactured
products.

売数量 値段 買数量
1,000 104
1,000 103
2,000 102
3,000 101

100 3,000
99 50,000
98 1,000
97 1,000

https://jpn.nec.com/press/201803/20180319_02.html
http://jpn.nec.com/press/201706/20170621_04.html

4

From Deep Learning to Reasoning
Deep Learning is pattern matching. Need abstract reasoning

Approach: Structured Network Learning

Analyze spatial and temporal relations between objects

A group of people get off of a yellow school bus with life rafts around their neck.

Relationships: [group of people, get off, yellow school bus], [group of people, with, life rafts]

“Attend and Interact: Higher-Order Object Interactions for Video Understanding”; C. Ma; A. Kadav;
I. Melvin; Z. Kira; G. AlRegib; H. Graf; CVPR 2018

5

SINet architectureStructured Network Learning

1 2 3 4

1. Object localization (CNN)  2. Focus of attention (MLP, LSTM) 

3. Interactions of objects (spatial and temporal)  4. Interpretation (MLP)

6

Surveillance

CPU, GPU, Vector Clusters

Math libraries: C/C++/Assembly

Torch, PyTorch: C/C++/Script

Deep Learning, SVM, SSI, Trees, Graphs, CRF, …

MKL-DNN, VectorDNN, CuDNN

Application Templates: Script

Scene analysis, Sequence analysis, Exception detection

Inspection Health Care

Layer 1: Hardware

Layer 5: Solutions

Layer 4: Templates

Layer 3: ML Frameworks

Layer 2: Math (BLAS, …)

Software Architecture

Other Critical components:
• Tools to analyze the conditions at the customer premise
• Automated evaluation of the data. Understand which Templates to use.
• Good user interface for easy deployment of solutions even by non-experts.

Fraud Detection Process Control

7

Running on Different Hardware Platforms

 CPU: Efficient parallelization

 GPU: Efficient multi-GPU parallelization

 Embedded: Cars, machining centers, …

─ RaspberryPi

─ NVIDIA Jetson TX2

 Vector processor: Aurora with VectorDNN

─ Edge: Compact high-performance

─ Data Centers: Efficient parallelization

 FPGA

8

VectorDNN: API compatible with MKL-DNN

Goal: Make VectorDNN easy to integrate with many Data Analytics frameworks

Intel Library for Deep Learning is optimized for vector instructions (AVX)

Torch7
RAPID

TensorFlow,
Caffe, …)

MKL DNNVectorDNN

NEC Aurora Intel CPU AVX512

Branch of MKL-DNN:
https://github.com/necla-ml/gen-dnn

Gen-dnn activities on GitHub

NECLA also contributed bug fixes that are
integrated in MKL-DNN

Status:

• VectorDNN is working, passes tests

• Torch compiles

• Performance optimizations are ongoing

https://github.com/necla-ml/gen-dnn

9

Vectorization of Convolutions
Input planes Output planes

Nested loops: 8 or
more
Tiling: introduces
more loop levels, but
allows consistent
implementations
across all layers

N * M Kernels

Tested 25 ways of lowering and
lifting
Example: im2col
• Expensive lowering, cheap lifting
• Often used; often not optimal,

but usually decent performance
without specific tuning. Makes
use of ‘gemm’

10

Tuning Gen-DNN convolutions
 There are many ways to speed-up operation of networks, but they become more and more

specific; need to evaluate what is worth implementing.

 Speedups (this is ongoing)

─ Remove interleaving support  dense data & kernel layouts (esp. “nchw & goihw”)

─ im2col techniques and loop transformations leading to gemm calls for inner loops.

Examples of features supported:

Convolution Feature MKL-DNN Description

Interleaving* Yes Specialized data layout (*) NEVER for Gen-DNN

strided Yes Every n’th image pixel

padding Yes Pad image border with zeros

groups Yes Kernel channels != image channels

dilation Yes Kernel applied to dilated image region

minibatch Yes Convolve multiple separate images at once

bias Yes Learn bias for convolution layer output

merging Yes Combine convolution with nonlinearity (Relu)

Forward Yes Forward with bias integrated

Backward Yes Backward wrt. data, weights, or both.

11

Comparisons

[Skylake1] Skylake OMP_NUM_THREADS=1
[Skylake8] Skylake OMP_NUM_THREADS=8, pragma omp
[aurora1] Aurora OMP_NUM_THREADS=1, blas_sequential
[aurora8] Aurora OMP_NUM_THREADS=8, blas_openmp, pragma omp

Network Skylake1 Skylake8 Aurora1 Aurora8

Alexnet 5224 1399 2969 486

VGG 11 1752 542 895 260

Resnet 50 7862 1641 4797 1060

Compare with Skylake: Intel Xeon Gold 6126 @ 2.6 GHz (AVX512)
• Timings of im2col + gemm implementation (no JIT). Timings include only convolutional layers from

each network forward and backward with respect to weights (no activation layers)
• Minibatch sizes: 64 for Resnet-50, 64 for VGG 11, 256 for Alexnet.
• Input sizes: 3x224x224 for Resnet-50, 3x100x100 VGG 11, 3x227x227 Alexnet.

Time in ms

12

OpenMP for Gen-DNN

Results over Gen-DNN’s “benchdnn” test suite of 204 convolutions

 Operation count is with respect to reference convolution (a faster
implementation is used)

BLAS
Gen-DNN

#pragma omp
Avg gigaflops Max gigaflops

blas_sequential disabled 225.2 474.6

blas_openmp disabled 192.0 1334.9

blas_openmp enabled 1062.5 2859.7

13

Implementation of Torch
 Without vectorization, Torch and nn packages pass all tests. Optim, sys, paths

also available. Uses compile-time Lua function bindings from C, instead of FFI
 With vectorization: Getting there

 Torch passes all tests except one NaN problem
 NN library has one test that segmentation faults (as of this week)

Torch

PyTorch
PyTorch + Torch

ML papers that mention:

A. Karpathy, ~50k papers

14

ML Frameworks
• Torch is one of the most widely used Open Source platforms; used by thousands

of developers in universities and industry (Facebook, Twitter, …).

• Lots of great tools; preferred by serious developers

Caffe CNTK
Microsoft

TensorFlow
Google

Theano Torch 7
NEC

Modeling
capability

Interfaces

Model
Deployment

Performance
single GPU

Architecture TBD

Ecosystem C++ C++ C++, Python Python Lua, Python

https://github.com/zer0n/deepframeworks

https://github.com/zer0n/deepframeworks

15

Benchmarking Deep Learning Networks

Example of training with
various networks:
Number of epochs to get to
90% accuracy

Compute time varies 7x to
17x among various
networks that have best
accuracies, depending on
what features are activated

It is more than raw speed: Which network learns fastest?

Key: The most efficient
networks must run at

high speed

16

Aurora: Conclusion
Deep Learning:

• Vector architecture is flexible and well suited for convolution layers
as well as for the other types of layers (good SIMD problem)

• Any of the fastest algorithms can be implemented efficiently on the
vector architecture (Winograd, Cook-Toom, …).

• A high efficiency of >75% or higher is achievable for most cases.
This may require some tuning (JIT).

• Without JIT (im2col + gemm) efficiency more typically 30% - 70%.

Data analytics is more than deep learning  key: Flexibility

• Large memory and high data bandwidth makes vector processor
attractive for large scale data analytics.

• Can integrate a wide range of algorithms with deep learning.
Extensive library to support such functions.

• e.g. collaborative filtering: Sparse matrix factorization, SVD.

Appendix

18

Data Analytics Eco System: PyTorch, ONNX

ONNX: Open Neural Network Exchange Format

Can more easily move models between state-of-the-
art tools and choose the combination that is best.

PyTorch ONNX exporter:
trace-based exporter, executes model once and
exports the operators which were run. If model is
dynamic, the export won’t be accurate. Examine the
model trace and make sure the traced operators look
reasonable.

PyTorch is most popular open source platform
now for development.
But for commercial products often Lua is
preferred! We can’t be stuck with Python!
Main differentiator of RAPID is the performance
and flexibility

Dominating open source frame works.

19

Tests of different ways of unrolling

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13

G
FL
O
P
S

Layers

Compute speed in each layer [GFLOPS]
VGG-C Convolution Layers

We tested over 25 way of unrolling the nested loops of convolutions.
Best way of unrolling differs for SX and AVX
Obtain consistently very good performance: here 76.5% efficiency on SX-ACE core
(64 GFLOPS max)

•Large networks
achieve very high
efficiency across all
layers.
•Tiled algorithms make
also smaller networks
efficient.

Image size: 224 x 224

