
NEC Vector Engine Performance with Legacy CFD Codes

Yu Yu Khine1, Hiroshi Daikoku2, Steve Frazier3, Raghunandan Mathur4, Takeshi Miyako2,

Keith Obenschain1, Gopal Patnaik5, Deepak Pathania4, Kevin Peterson3, Robert Rosenberg1,

Gursimranjit Singh4

1 U.S. Naval Research Laboratory
2NEC Corporation

3Hewlett Packard Enterprise
4 NEC Technologies India

5Syntek Technologies

Distribution A: Approved for public release; Distribution unlimited

• From the 1970’s to early 1990’s the U.S. DoD developed codes to take advantage of

vector supercomputers (Cray 1 – Cray T90). These codes are still in use!

• The NEC Vector Engine (VE) is an up-to-date, high-performance version of the vector

computer perfected by CRAY in the 1990s

• It can provide a 3-6X performance increase over conventional computers for legacy CFD

simulation models

• The NEC VE provides an opportunity to make full use of these well-validated codes by

giving them a much-needed performance boost with some optimization

Introduction

Distribution A: Approved for public release; Distribution unlimited

Objectives

• The goal is to demonstrate the capabilities of the NEC Vector Engine for a legacy CFD code,

especially FDL3DI developed at U.S. Air Force Research Laboratory (AFRL)

• Supported by the DoD’s Foreign Comparative Testing program whose goal is to transition

innovative foreign technology into existing and future DoD programs, the objectives of the

project are:

- To benchmark standardized codes such as NAS parallel benchmarks, machine

learning, etc. to study the performance of VE

- To qualitatively assess the ease of use of the VE and to quantify the speedup over

conventional Intel Xeon and recently available systems such as AMD EPYC

Distribution A: Approved for public release; Distribution unlimited

Collaboration with NEC, HPE and
AFRL

• Collaborate with NEC consultants on optimization of codes and mentoring on the use

of the platform

- Reach back to NEC hardware and software teams

• Work with Hewlett Packard Enterprise (HPE) on single and cluster designs using NEC

Vector Engine cards

• Weekly meetings and sometimes daily discussions with NEC and HPE as needed

• Communicate with developer of FDL3DI code, Dr. D. Garmann at AFRL, on guidance in

optimizing the code for NEC system

Distribution A: Approved for public release; Distribution unlimited

NEC SX-Aurora TSUBASA

Vector Engine (VE)

• NEC has been producing vector architectures since 1983

• Each VE has 8 cores, a total of 2.15 double precision TFLOPS

• Vector Register has 256 eight-byte elements

• The processor has the world’s first implementation of six 3D-stacked High Bandwidth

Memory modules with a total 48GB

• A Scalar Processing Unit handles non-vector instructions on each of the cores

• Runs C/C++/Fortran with MPI – Codes primarily run on NEC VE hardware

Distribution A: Approved for public release; Distribution unlimited

VE Cluster Design

• Each Vector Host (VH) can host up to 8 VEs, clusters of VH can scale to arbitrary

number of nodes to form a supercomputer.

HPE Apollo 6500 Gen10
8 VE Server

Distribution A: Approved for public release; Distribution unlimited

Architectures Evaluated

Intel Xeon Platinum
8260

AMD EPYC 7702 NEC VE

Cores/Pipes per
socket/device 24 64

8

Sockets/Devices per
Node

2 2 2

Memory Technology
DDR4-2933

(six channels)
DDR4-3200 (eight channels) HBM2 (six modules)

Theoretical Memory
Bandwidth per device

141 GB/sec 204.8 GB/sec 1.2 TB/sec

LLC Cache Size 35.75MB 256MB 16MB

Process Technology Intel/14nm TSMC/7nm TSMC/16nm

Distribution A: Approved for public release; Distribution unlimited

Completed Benchmarks

• STREAM benchmark designed to measure sustainable memory bandwidth

• SGEMM and SAXPY routines in standardized NAS Parallel Benchmarks

• Standard molecular dynamics simulation

• NRL developed CFD code, FAST3D

• AFRL developed CFD code, FDL3DI

- Timings are compared with those on Intel Xeon and AMD EPYC systems

- Detailed profiling of FDL3DI on Intel, AMD and NEC systems

Distribution A: Approved for public release; Distribution unlimited

• Performance of STREAM on various systems
• NEC VE outperforms Intel and NVIDIA

• FAST3D (CFD) code on Intel and NEC
• Code efficiently uses cache, main memory

bandwidth bound on larger problems

Selected Benchmarking Results

Distribution A: Approved for public release; Distribution unlimited

FDL3DI Overview

• Powerful, high-order, structured, overset CFD solver developed at AFRL

• Scalable and efficient

• Implicit large eddy simulation (LES) capability

• Compact scheme with filtering, hybrid shock capturing, high-order interpolation,

hole handling

• Recent improvements in FDL3DI:

– Fortran 90 with MPI-I/O

– Hybrid MPI/OpenMP implementation

– Robust hole-cutting and scheme adaption

– Algorithmic enhancements via filter compact delta formulation
Distribution A: Approved for public release; Distribution unlimited

Applications and Scaling

• Shock/boundary layer interaction in front of
canonical shapes

• Wing-vortex aerodynamics

• Flow control for laminar flow airfoils

• Linear scaling for large mesh sizes

Ref: “High-Order Overset CFD Simulations Using FDL3DI”, S. E. Sherer,
13th Overset Grid Symposium, Mulkiteo, WA, 17-20 October 2016.

Distribution A: Approved for public release; Distribution unlimited

Test Case for FDL3DI

• A classic cylinder in a free stream example

• Freestream Mach number = 6

• Zero angle of attack -- flow from left

• Shock Sensor – DUCROS

• Three problem sizes: 1283, 2563, 4803

• Time step size = 0.001

• Timings taken for 101-150 time steps Mach number representation
of flow past cylinder

Distribution A: Approved for public release; Distribution unlimited

Problem Sizes for FDL3DI Code

• FDL3DI run on NEC VE node (2 VE Accelerators) with
eight MPI Ranks using hybrid MPI/OpenMP

• For eight MPI ranks, each dimension is divided by
two so the maximum vector length is half the
problem dimension plus guard cells

• 4803 case was selected to increase the average
utilization of vector pipes

– Vector length for this problem is close but does
not exceed 256

– Exceeding a vector length of 256 (e.g. problem
size 5123) results in poor performance due to
inefficient use of VE

Problem
Size

Block Size
Max Vector

Length

1283 643 68

2563 1283 132

4803 2403 244

Distribution A: Approved for public release; Distribution unlimited

• Run without code modifications

• AMD EPYC’s large cache (Last Level

Cache: 256MB) makes it a strong

competitor for smaller problem sizes

• Main memory bandwidth becomes

important at larger problem sizes

Baseline Timings of FDL3DI

Distribution A: Approved for public release; Distribution unlimited

Performance normalized by 1283 case run on Intel Xeon

Profile
Code

Develop
Reproducers

Optimize,
Consult with

NEC

Integrate
Optimized

Code

Test
V&V

• The most time-consuming routines were optimized for better performance on VE
- Started with the tridiagonal solver and other time-consuming routines

• Optimized routines integrated back into codebase resulting in optimized FDL3DI

FDL3DI Optimization Process

Distribution A: Approved for public release; Distribution unlimited

Optimized Code

Programming Framework In-house Profilers

C/C++

Fortran

OpenMP

Library
Support

ML
Libraries

Tools

• ISO/IEC 9899:2011 (aka C11)

• ISO/IEC 14882:2014 (aka C++14)

• ISO/IEC 1539-1:2004 (aka Fortran 2003)

• ISO/IEC 1539-1:2010 (aka Fortran 2008)

• Version 4.5

• MPI Version 3.1 (fully tuned for Aurora
architecture)

• Numeric libraries (BLAS, FFT, Lapack,
etc)

• TensorFlow

• Frovedis (spark, scikit-learn)

• GNU Debugger (gdb)

• Eclipse Parallel Tools Platform (PTP)

• FtraceViewer / PROGINF

NEC Development Environment

Distribution A: Approved for public release; Distribution unlimited

NEC Development Environment
Experience

• Installation via RPM’s straightforward

• Initial codes compiled without modification

• Encountered several compiler issues while optimizing codes on VE

- Some cases of compiler aborts and cases of deviation from Fortran standards

were reported and were promptly resolved in the next release of the compiler

- Some incompatibilities of code with automatic vectorization are being

discussed, some cases involved work-arounds

Distribution A: Approved for public release; Distribution unlimited

NEC Development Environment
Profilers

• NEC’s profiler, FTRACE, is used to obtain performance information such as the processor
usage and vectorization aspect of each function in a program, as well as user defined
regions

– Does not give loop-by-loop analysis and does not profile in-lined code

– User defined regions provided a method for finer grain analysis

– Adds overhead

• Installed and applied the profiler, Tuning and Analysis Utilities (TAU), on NEC system

– Engaged with developer of TAU, Paratools, Inc. to support NEC VE

– Instrumentation was too slow on NEC system (work in progress)

Distribution A: Approved for public release; Distribution unlimited

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD-LLC PROC.NAME
TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

1012 49.093(24.0) 48.511 23317.2 14001.4 96.97 83.2 42.132 5.511 0.000 80.32 funcA
160640 37.475(18.3) 0.233 17874.6 9985.9 95.22 52.2 34.223 1.973 2.166 96.84 funcB
160640 30.515(14.9) 0.190 22141.8 12263.7 95.50 52.8 29.272 0.191 2.544 93.23 funcC
160640 23.434(11.5) 0.146 44919.9 22923.2 97.75 98.5 21.869 0.741 4.590 97.82 funcD
160640 22.462(11.0) 0.140 42924.5 21989.6 97.73 99.4 20.951 1.212 4.590 96.91 funcE

53562928 15.371(7.5) 0.000 1819.0 742.2 0.00 0.0 0.000 1.253 0.000 0.00 funcG

--
54851346 204.569(100.0) 0.004 22508.5 12210.7 95.64 76.5 154.524 17.740 13.916 90.29 total

62248 37.709(18.4) 0.606 2200.2 1026.4 0.00 0.0 0.000 0.532 0.000 20.00 loop#1
2032 4.834(2.4) 2.379 415.8 0.0 28.61 6.3 4.098 0.246 0.000 0.00 loop#2

...

Goal: Identify bottleneck routines and optimize them to efficiently using Vector Engine Units

• Improve Vector Operation Ratio (V.OP) - code needs to vectorize!

• Improve Average Vector Length (Aver. V. Len) – longer vector length, better performance

Sample FTRACE Output

Distribution A: Approved for public release; Distribution unlimited

Optimization Techniques

Vectorize

• Refactor serial routines to vector friendly implementations

• Removing vector inhibitions for a high vector operation ratio

VREG

• A vector register (vreg) is a compiler directive supported by the NEC compilers that helps

allocate a local array onto any available vector register

• During the code generation, the compiler assigns a dedicated vector register to the array

• Was used to increase data reuse – less pressure on memory subsystem

Loop Collapse

• Address two or more dimensions as one long dimension (e.g. A(m,n) becomes A(m*n,1))

• Increases effective vector length – better use of VE hardware

Distribution A: Approved for public release; Distribution unlimited

Example of vreg

Distribution A: Approved for public release; Distribution unlimited

+------> DO m = 1, num_vars

|U-----> DO i = 3, ni-2

||V----> DO k = ks, ke

||| wrk(k,i,m,2) = 0.25 * wrk(k,i+2,m,1)+

||| & 0.50 * wrk(k,i+1,m,1)

||V---- END DO

|U----- END DO

+------ END DO

• Compiler automatically unrolls the outer loop.

• Compiler automatically vectorizes inner loop.

ORIGINAL

• Vector registers are used for the computation with vector
loads and stores in each iteration.

!NEC$ vreg(wrk0)

!NEC$ vreg(wrk1)

+------> DO ksv = ks, ke, 256

| kev = MIN(ke, 256+ksv-1)

|

|+-----> DO m = 1, num_vars

||V----> DO k = ksv, kev

||| k_blk = k-ksv+1

||| V wrk0(k_blk) = wrk(k,1,m,1)

||| V wrk1(k_blk) = wrk(k,2,m,1)

||V---- END DO

||+----> DO i = 3, ni-2

|||V---> DO k = ksv, kev

|||| k_blk = k-ksv+1

||||

|||| V wrk(k,i,m,2) = 0.25 * wrk0(k_blk)+

|||| & 0.50 * wrk1(k_blk)

||||

|||| V wrk0(k_blk) = wrk1(k_blk)

|||| V wrk1(k_blk) = wrk2(k_blk)

|||V--- END DO

||+---- END DO

|+----- END DO

• Compiler directive that assigns specific arrays to vector
registers.

• Arrays assigned to dedicated vector registers.

• Block the outermost loop at 256 elements to ensure
absolute usage of the vector registers.

OPTIMIZED

• The computation utilizes dedicated vector registers
avoiding load-store latency.

Example of Loop Collapsing

Distribution A: Approved for public release; Distribution unlimited

REAL(KIND=8),DIMENSION(:,:,:,:), ALLOCATABLE :: wrk

V===> ALLOCATE(wrk(dim1,dim2,dim3,dim4),SOURCE=zero)

+----> DO j = 1, dim1

|V---> DO i = 1, dim2

|| wrk(i,j,1,4)= nx(i,j) + ny(i,j) + nz(i,j)

|| wrk(i,j,2,4)= nx(i,j) + ny(i,j) + nz(i,j)

|| wrk(i,j,3,4)= nx(i,j) + ny(i,j) + nz(i,j)

|| wrk(i,j,4,4)= nx(i,j) + ny(i,j) + nz(i,j)

|V--- END DO

+---- END DO

ORIGINAL

Declaration of multidimensional allocatable work array.

First two dimensions of the array are traversed using
nested loops.

REAL(KIND=8),DIMENSION(:,:,:,:),pointer,

& contiguous :: wrk

REAL(KIND=8),DIMENSION(:,:,:), pointer :: wrk1d

V===> ALLOCATE(wrk(maxd,maxd,nvar,6),SOURCE=zero)

wrk1d(nsize,dim3,dim4) => wrk

nsize = dim1 * dim2

V---> DO i = 1, nsize

| wrk1d(i,1,4) = nx1d(i) + ny1d(i) + nz1d(i)

| wrk1d(i,2,4) = nx1d(i) + ny1d(i) + nz1d(i)

| wrk1d(i,3,4) = nx1d(i) + ny1d(i) + nz1d(i)

| wrk1d(i,4,4) = nx1d(i) + ny1d(i) + nz1d(i)

V--- END DO

Declaration of a contiguous pointer to a multidimensional array.

Pointing to original multidimensional array.

Declaration of a new pointer, targeted at treating two
dimensions of wrk array as one long vector.

OPTIMIZED

Nested loop collapsed into a single loop.

Single node comparison

for Original and Tuned FDL3DI

• Refactoring efforts significantly

improved utilization of VE

hardware resulting in significant

performance gains for all problem

sizes

• Use of VREG increases effective

memory bandwidth

Distribution A: Approved for public release; Distribution unlimited

Performance data scaled by that of 1283 case on Intel Xeon

Roofline Analysis of FDL3DI

• A Roofline Model is an easy way to visualize

performance in relation to arithmetic

intensity of the compute kernel

• CFD Codes are typically memory bound, top

FDL3DI routines demonstrate this behavior

• 4803 case is near the Peak-bandwidth line

• Tuned FDL3DI is making efficient use of VE

• low arithmetic intensity limits performance

to available memory bandwidth

Distribution A: Approved for public release; Distribution unlimited

Verification

• Ran simulations on Intel Xeon, AMD EPYC and NEC Vector

Engine systems

• Numerical results are visualized using Paraview

• Flow variables and forces are compared for accuracy for each

simulation

• Results suggest 1283 is very coarse grid for this test case

• Results for 2563 and 4803 are very close for all the domain

decompositions considered

Distribution A: Approved for public release; Distribution unlimited

Baseline and tuned versions of FDL3DI
on an AMD node for 2563 case

• Source code improvements tested on

one node of AMD EPYC and Intel

Xeon Systems

• No significant impact on the tuned

FDL3DI code on AMD EPYC

and Intel Xeon

Distribution A: Approved for public release; Distribution unlimited

Conclusions

• Codes can run unchanged on the NEC VE, but optimization is required to

take full advantage of the VE architecture

– Codes that originally targeted vector architectures have been optimized for
different architectures over the years: scalar code from later
implementations needs to be optimized for vector architectures

– Vector Engine requires efficient use of the 256 element double precision
registers

– Optimized codes more complex, but still quite readable by developers

Distribution A: Approved for public release; Distribution unlimited

Conclusions
Continued

• Codes limited by main memory bandwidth are good candidates for the

current NEC VE architecture

• Other architectures are competitive depending on the problem

characteristics:

– Cache-friendly: AMD EPYC

– Short Vectors: SVE, AVX2, AVX512 Instruction Set Architectures

– Optimization can mitigate (loop collapse, VREG)

Distribution A: Approved for public release; Distribution unlimited

Future Work

• MPI Scaling beyond 2 VE’s

– Eight NEC VE’s on upcoming development node

– Larger problems put additional stress on MPI and communication

• Benchmark and profile development versions of FDL3DI

– Changes to algorithms/implementation could change performance characteristics

– Different numbers of OpenMP threads

• Examine other codes/relevant mini-apps (e.g. public-domain DOE mini-apps)

• Examine other profilers such as TAU

• Estimation of future NEC Vector Engine performance

Distribution A: Approved for public release; Distribution unlimited

Acknowledgements

• This project is co-sponsored by the U.S. Department of Defense Foreign Comparative

Testing Program within the Office of the Undersecretary of Defense for Research &

Engineering

• Co-sponsored by U.S. DoD High Performance Computing Modernization Program

• Co-sponsored by the Office of Naval Research through the Naval Research 6.1 Materials

Science Task Area

• Close collaboration with NEC consultants is also greatly appreciated

• Thanks to Dr. D. Garmann at the U.S. Air Force Research Laboratory on the guidance on

the FDL3DI code

Distribution A: Approved for public release; Distribution unlimited

