

Performance Comparing of VASP on CLAIX-2018 and SX-Aurora TSUBASA

Runtime, Energy Consumption, Performance Measurements, Analysis results of VASP on AURORA and on CLAIX18

Motivation

VASP is an important code for users of RWTH Compute Cluster

SX-Aurora TSUBASA is the architecture of interest for us

- → Improving, reliability and productivity of High-Performance Computing on the NEC CLAIX system
- Evaluation of different architectures with representative reduced Benchmark
 - → Scalability
 - → Power Efficiency
- Discussing of metrics to make performance comparing of the compute systems more fair and aware

Compute Systems

RWTH Compute Cluster CLAIX-2018

- Intel Xeon Platinum 8160 (SkyLake)
- 2 sockets per node
- 48 cores per node
- 2.1GHz
- Peak performance ~2.24TF per node
- Intel compiler 19.0, Intelmpi 2018
- Intel MKL

• NEC CLAIX

- Vector Host
 - Intel Xeon Silver 4108 (SkyLake)
 - 1.80 GHz
- 8 Vector Engines (cards) Type10
 - 8 cores
 - 2.45TF
 - 1.22TB/s memory bandwidth
- NEC compiler 3.0.7, NEC MPI 2.7.0, NLC 2.0.0
- FTRACE

The Vienna Ab initio Simulation Package(VASP)

A copyright-protected software for atomic scale materials modelling, e.g. electronic structure calculations and quantum-mechanical molecular dynamics, from first principles. The basic methodology is <u>density functional</u> <u>theory</u> (DFT). (reference: https://www.vasp.at/)

VASP Version

- On RWTH Compute Cluster CLAIX-2018
 - Self-built Version 5.4.4
- On SX-Aurora TSUBASA
 - Version 5.4.4, patch from NEC

VASP Benchmarks

Big case

- Representative but reduced data set from VASP users on CLAIX-2018
- Scalable case
- Start data for 488 ions
- High termination criteria
- LREAL = Auto
- VE10: NCORE = 8
- Xeon: NCORE = 12/48/96

Small case

 Running test data set for small number of processes

- Start data for 15 ions
- Earlier termination of calculation
- LREAL=.FALSE.
- VE10: NCORE = 4
- Xeon: NCORE = 24

VASP Vectorization FTRACE Analysis results on four Aurora cards

0.340

4.875

9.198

Execution Date : Wed Nov 4 11:58:40 2020 CET Total CPU Time : 5:20'26"309 (19226.309 sec.) Elapsed Time : 0:11'37"379

FREQUENCY	EXCLUSIVE TIME[sec]	(%)	AVER.TIME [msec]	MOPS	MFLOPS	V.0P RATIO	AVER. V.LEN	VECTOR TIME	L1CACHE MISS	CPU PORT CONF	VLD LLC PROC.NAME HIT E.%	
182824	3327.135(17.3)	18.199	3588.3	2189.0	78.33	198.8	271.374	2099.889	1.223	44.84 HAMIL::HAMILTMU	
1903840	2834.635(14.7)	1.489	26123.3	19940.6	99.56	241.9	2365.717	379.648	626.206	67.73 FFTBAS PLAN MPI	
32	2067.611(10.8)	64612.831	1315.4	72.5	2.75	255.7	2.897	0.225	0.000	79.12 WAVE::WFINIT	
339008	1454.109(7.6)	4.289	94179.2	89170.1	99.71	190.6	1453.301	0.736	205.861	56.50 ORTH1	
153544	1156.775(6.0)	7.534	6769.3	4642.2	90.36	16.0	1128.116	17.265	48.709	48.92 NONL HIGH::W1 PROJAL	L
160	1140.641(5.9)	7129.009	59648.1	56536.8	99.22	233.5	703.844	14.637	1.320	15.22 DAVID::EDDAV	
384	1002.734(5.2)	2611.287	18687.9	16397.5	95.91	204.4	141.121	13.610	2.440	38.81 SUBROT::EDDIAG	
2466304	793.562(4.1)	0.322	6691.6	0.0	98.33	248.4	615.330	48.490	21.043	22.87 MAP FORWARD	
3063936	571.125(3.0)	0.186	706.8	0.0	89.70	106.4	167.667	18.289	0.000	55.13 M ALLTOALL D	
1341248	548.229(2.9)	0.409	2879.8	0.0	96.72	201.8	396.774	24.519	12.768	27.16 MAP_BACKWARD	
672898380	19226.309(100.0)	0.029	24502.6	21054.5	97.61	170.3	9698.210	2840.884	939.849	9 42.48 total	
FLAPSED	COMM.	TTMF	COMM.TIME	TDLE TIME	TDIF TT	MF A	/FR.LEN	COU	ΝΤ ΤΟΤΑΙ	LEN PRO	.NAME	
TIME[se	ec] [sec]	/ ELAPSED	[sec]	/ ELAPS	ED	[byte]		[b	yte]		
108.9	054 0	.000		0.000			0.0		0	0.0 HAM	EL::HAMILTMU	
89.6	651 0	.000		0.000			0.0		0	0.0 FFTE	BAS PLAN MPI	
79.6	602 0	.000		0.000			0.0		0	0.0 WAVE	E::WFINIT	
62.3	867 0	.000		0.000			0.0		0	0.0 ORTH	11	
43.0	000 22	.054		21.133			47.8K	83238	84 3	8.0G DAV	ED::EDDAV	
37.5	672 0	.000		0.000			0.0		0	0.0 NONI	_ HIGH::W1 PROJALL	
32.1	.52 32	.137		18.028			4.1M	5840	90 23	2.6G DIS	PW BAND	

3.1M

125.0K 204672 24.4G SUBROT::EDDIAG 3.1M 1233600 3.6T MAP FORWARD

671040

VASP on Aurora vs. Claix18

0.585

10.886

15.066

2.0T MAP_BACKWARD

31.421

27.281

23.149

VASP Scalability

Comparing of Energy Consumption of VASP

- VASP needs some more time on Aurora
- VASP can be more efficient on Aurora in consumption of energy

Energy consumption measurements

- \rightarrow No using of energy measuring devices
- → Only using of performance monitoring tools

CLAIX-2018

- Likwid measurements on one compute node with following groups
 - → ENERGY for energy consumption
 - → FLOPS_DP for compute performance

Aurora

- → veperf for energy consumption and compute performance on VEs
- \rightarrow Likwid for energy consumption of VH

VASP Energy Consumption and Power Efficiency

Performance Computing

IT Center

VASP Power Efficiency

Aurora

- Power 95-120 Watt per card incl. VH (Xeon is ~340 Watt per node)
- Power efficiency (MFLOPS/Watt per card) is better (1.3-2.05x)
- Energy consumption measurements include energy for VE and VH (CPU and DRAM)

Energy Consumption Measurements on Aurora

#Cards	Runtime Speedup	Energy Cards [kJ]	Energy Host [kJ]	Energy Cards + Host part [kJ]	Power per Card excl. Host [W]	Power per Card incl. Host [W]	Power total [W]
1	1.00	195	128	211	112	121	121
2	1.80	208	73	227	108	117	234
4	2.85	240	52	266	98	109	436
8	3.25	364	43	407	85	95	761

Total Energy Consumption

VASP on Aurora vs. Claix18

Power per Card/Node

High Performance Computing

Conclusion

VASP on Aurora

- \rightarrow Not much more time for solution
- → Very high vector operation ratio and average vector length
- → Much lower energy consumption
- → Higher Power Efficiency [MFLOPS/WATT]

Thank you for your attention

