Vector Engine for Geoscience and Energy

2021 June **NEC** Corporation

© NEC Corporation 2021

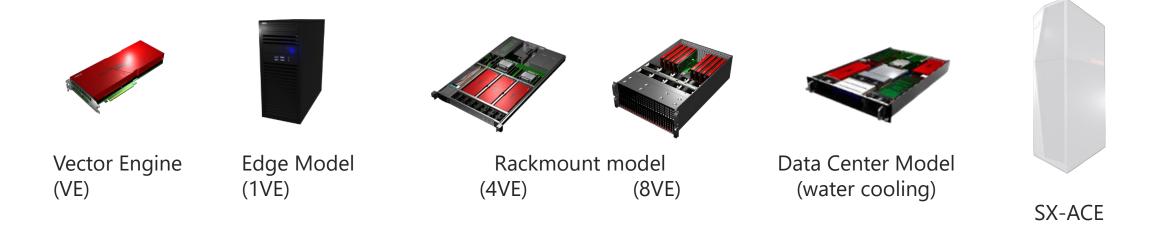
Agenda

- 1. What is Aurora?
- 2. Why Aurora for geoscience?
- 3. Performance
- 4. Summary

What is SX-Aurora TSUBASA?

Pop Quiz (1)

1 Which is correct?


- a. SX Aurora Tsubasa
- b. SX-Aurora TSUBASA
- c. SX Aurora-Tsubasa

2 What is the design concept of SX-Aurora TSUBASA?

- a. High peak performance
- b. High B/F ratio
- c. Easy to use
- d. Flexibility
- ③ What programming frameworks are supported?
 - a. Fortran
 - b. C/C++
 - c. CUDA
 - d. MPI

4 Which one is included in SX-Aurora TSUBASA lineup?

5 What is the target domain of SX-Aurora TSUBASA?

- a. Finance
- b. Meteorology
- c. Electromagnetics
- d. AI/ML
- e. Geoscience (Oil & Gas, Energy)

Why SX-Aurora TSUBASA for geoscience?

E&P Value Chain and HPC/AI/DA Role

	3D Seismic / Imaging				Reservoir Simulation	Surveillance/ 4D Seismic
	Measurement	Synthetic model Inversion	Subsurface Imaging	Interpretation / Characterization	Simulation / History Matching	Infill Drilling Production / EOR
Work					Oil rate match	
Application	Compressive sensing	Elastic / Anisotropic Full Wave Inversion	Reverse Time Migration	Data Integration/ Digital Twins / Visualization	Production forecasting Economics	Reservoir Monitoring Real Time Dec. Making
Challenge	Expensive	3 days with CPU Memory limitations	Takes time and effort	Nonunique Solutions	Trial and error	Optimum well location recovery factor
HPC Value	Real time	Less than a day	Seamless	AI/ML	Efficiency	Real time feedback
AI/DA Usage	Pre-processing of the measured data (Discretion, Completion, Noise Correction)	Detection of Convergence Condition / Suitable Parameter Ability to create alternative models fast	Image updating with Data Mining Deep Learning	Oil field identification, Recommendation of Data Mining method Big Data / 4V concept	Model Validation Digital Twins Proxy / Surrogate models	Reservoir surveillance/ Visualization

Why SX-Aurora TSUBASA for geoscience?

Because it is **easy to achieve high performance** in geoscience applications (same source code with x86, but 10 times faster)

♦ <u>It is easy</u>

- Start small and scale large
- Use same source code with x86 (Fortran/C/C++)
- Automatic vectorization and parallelization by compiler

High performance

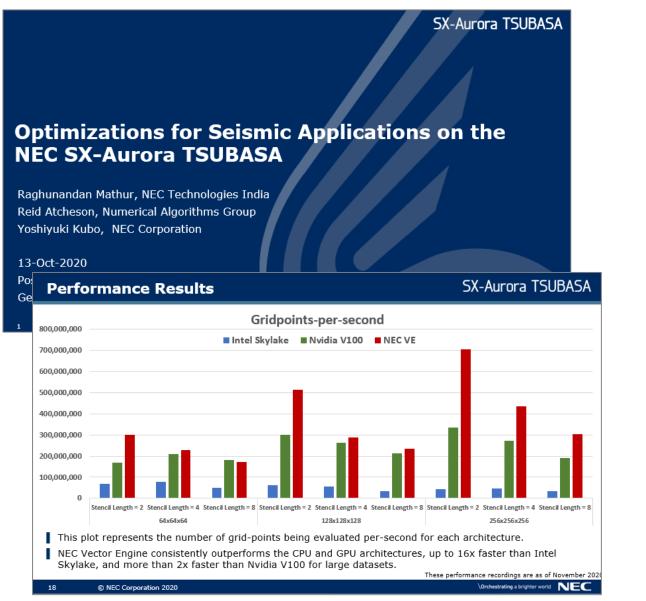
- Geoscience applications require large memory bandwidth and will benefit from Vector Engine architecture
- Higher performance means
 - More revenue (Improved success rate in exploration, Enhanced oil recovery)
 - Reduce cost (Reduce failure cost and delay cost)
 - More sophisticated and complex research

Frost & Sullivan Best Practices Awards

Accelerating Time to Business Value

Frost & Sullivan finds that NEC's SX-Aurora TSUBASA can expedite new oil and gas reservoir discoveries by leveraging full-wave inversion and reverse time migration for seismic processing much faster than its peers.

Offering Strong Growth Potential


Frost & Sullivan rates NEC's capability to deliver optimal digitalization outcomes and high-touch customer support far higher than competitors and finds NEC's SX-Aurora TSUBASA a best-in-class HPC solution for the industrial and energy markets.

https://ww2.frost.com/wp-content/uploads/2021/01/NEC-Award-Write-Up-Final.pdf

Q frost & sullivan best practices awards nec

× 🌷

Selected to Present at SEG20 and Rice Oil & Gas HPC Conference

HPC Value Addition in Exploration & Production of Oil and Gas

Fred Aminzadeh (FACT / UH)

Masashi Ikuta (NEC Corporation)

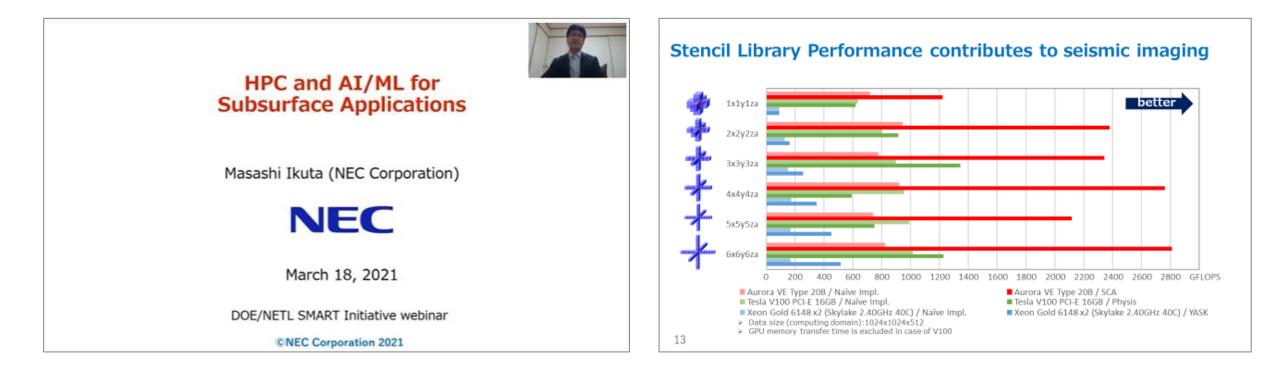
NEC

March 5, 2021

Summary

- •HPC is widely used in oil & gas and it is essential
- Problem : We need more performance, but core performance seems to have reached a plateau
- Solution : Vector architecture can be the answer

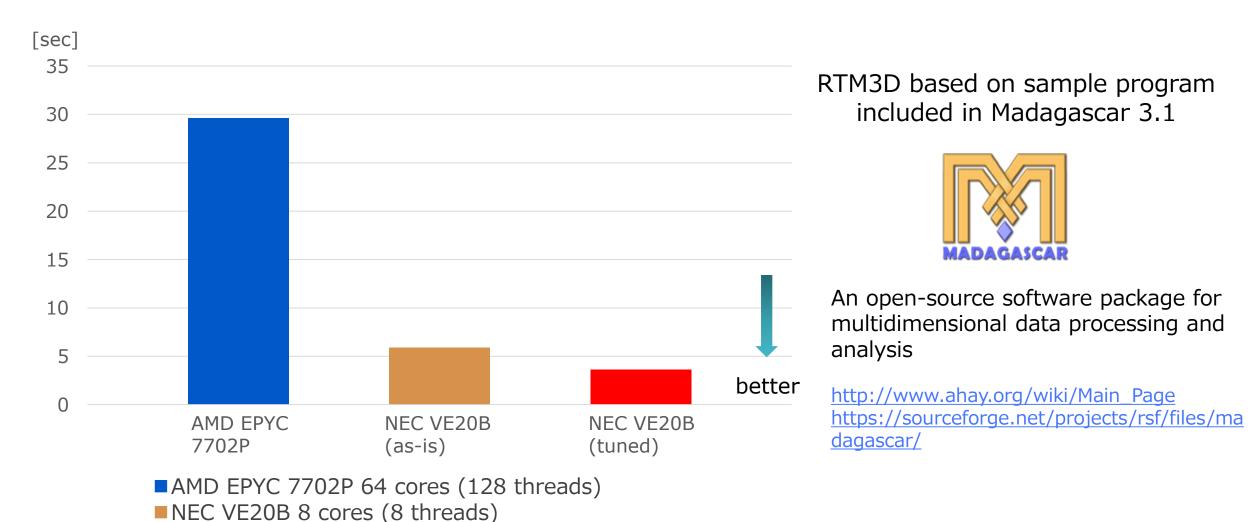
Tribute to Ken Kennedy who devoted for automatic **vectorization** and **HPF** (High Performance Fortran)

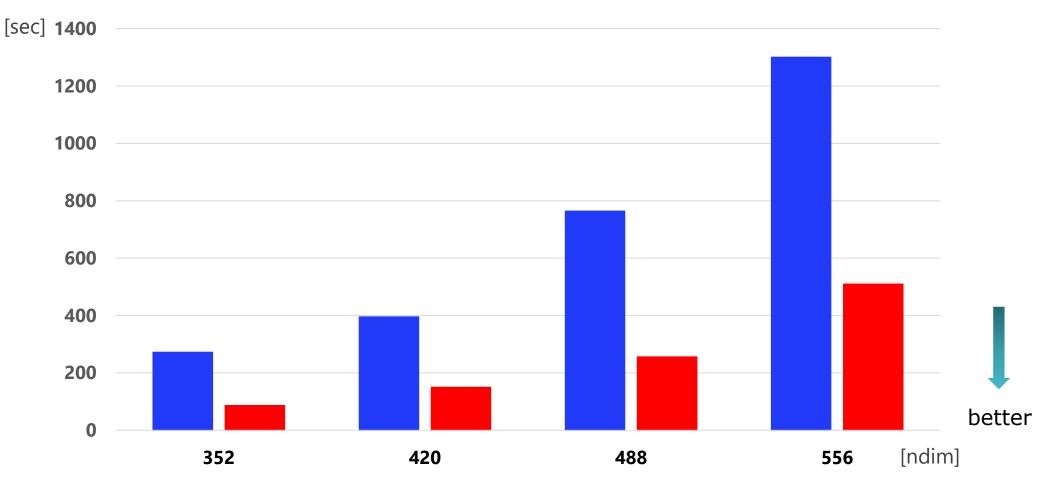


HPF is alive ! https://hpff.rice.edu/

https://www.youtube.com/watch?v=LcQ5RJVdr0k

Invited to Present at U.S. DOE webinar

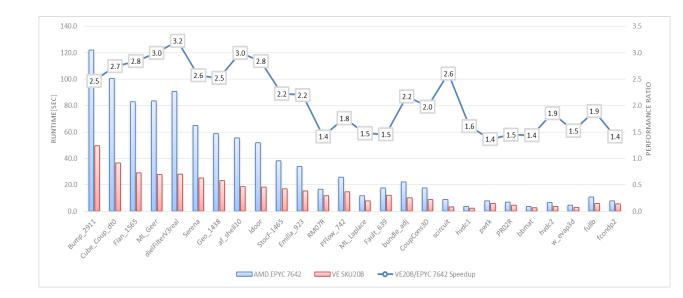

Performance


RTM (Reverse Time Migration) performance

NEC VE20B 8 cores (8 threads), stencil library applied

RTM3D modeling, Grid size 1002 x 512 x 4002, 60 iterations

FWI (Full Waveform Inversion) performance

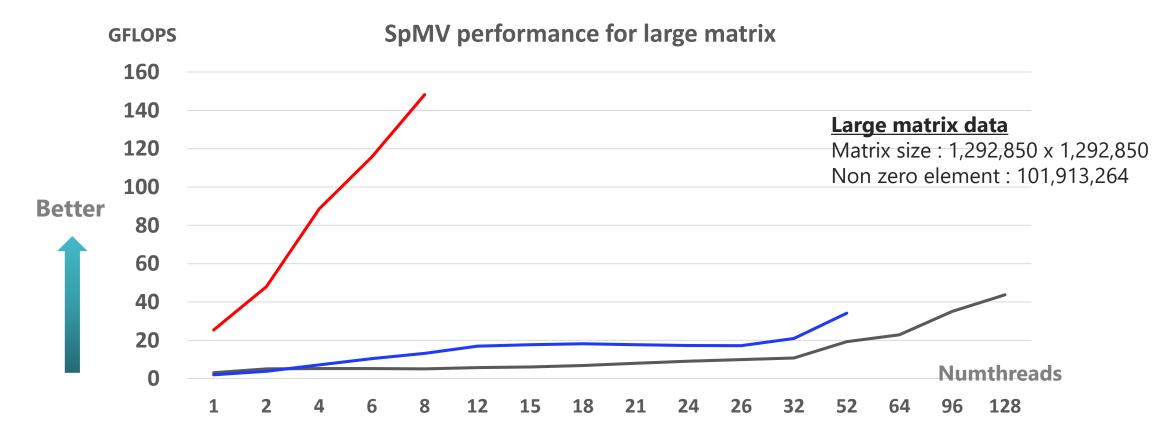

AMD 7542 (32cores@2.9GHz) x2sockets / Intel compiler with AVX2 support forced for AMD
NEC VE20B - 8 cores (8 threads) / NEC compiler

FWI mini-app : <u>https://github.com/Hopobcn/FWI/</u>

HYPRE Performance

- Iterative solvers and preconditioners can take advantage of the VE technology with zero prerequisites for porting HYPRE ... !
- GMRES iterative solver
 - With relatively small dataset, the gap in the performance ratio is not so high since VE big cores doesn't have enough data – normal with such memory bound apps
 - VE SKU20B is outperforming AMD EPYC 7642 full node by ~ 2.1x
- FlexiGMRES AMG
 - VE SKU20B is outperforming AMD 2 sockets EPYC 7642 by ~4x on average

Hypre: Scalable Linear Software Solver and Multigrid Methods https://computing.llnl.gov/projects/hypre-scalable-linear-solversmultigrid-methods



Orchestrating a brighter world

NEC

SpMV (Sparse Matrix Vector multiplication)

AMD EPYC 7702 – 2 sockets 128 cores (128 threads) / Intel compiler with MKL
Intel Xeon Gold 6230R – 2 sockets 52 cores (52 threads) / Intel compiler with MKL
NEC VE10B - 8 cores (8 threads) / NEC compiler with NLC(NEC Library Collection)

CCS (Carbon dioxide Capture and Storage)

Massively parallel simulation of Geologic CO_{2} storage on the Earth Simulator

Project Representative

Hajime Yamamoto Taisei Corporation

Authors

Hajime Yamamoto^{*1}, Shinichi Nanai^{*1}, Keni Zhang^{*2}, Noriaki Nishikawa^{*3}, Yuichi Hirokawa^{*3}, Ryusei Ogata^{*4}, Kengo Nakajima^{*5}

- * 1 Taisei Corporation
- * 2 Tongji University (E.O. Lawrence Berkeley National Laboratory)
- * 3 Japan Agency for Marine-Earth Science and Technology
- * 4 NEC Corporation
- * 5 The University of Tokyo

Abstract

CCS (carbon dioxide capture and storage) is a promising approach for reducing the greenhouse gas content in the atmosphere, through capturing carbon dioxide (CO₂) from large emission sources and injecting it into reservoirs (such as deep saline aquifers). Large-scale storage projects will likely involve very long-term storage of huge amounts of CO₂, potentially exceeding hundreds of millions of tonnes (Mt). This study intends to demonstrate potential benefits of massively parallel computing technology for simulating geologic CO₂ storage for important scientific and engineering topics. A parallelized general-purpose hydrodynamics code TOUGH2-MP has been used on scalar architectures where it exhibits excellent performance and scalability. However, on the Earth Simulator (ES2), which is a massively parallel vector computer, extensive tune-ups were required for increasing the vector operation ratio. After tune-ups of the code, TOUGH2-MP generally exhibits excellent performance, and we achieved computational performance of 10-14 GFlops/PE (i.e., approximately 10-14% of peak performance of ES2), which is considered to be satisfactory for the general purpose code. From last year, we are continuously performing a simulation of a diffusion-dissolution-convection process in a three-dimensional, field-scale reservoir model, which is largely computationally demanding; for investigating the impact of the convective mixing of dissolved CO_2 on long-term stability of CO_2 in storage reservoirs. In this year, the simulation for 1000 years has been completed.

Keywords: large-scale simulation, CCS, CO₂, global warming, groundwater

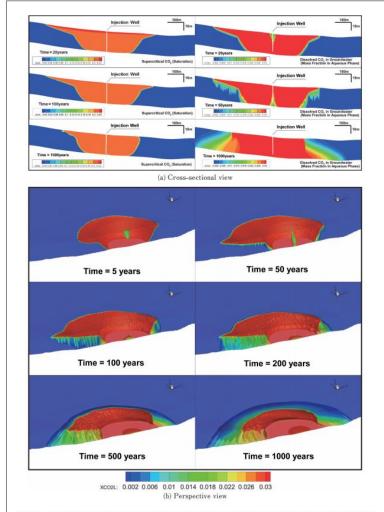


Figure 1 A preliminary simulation result of diffusion-dissolution-convection process in a 3D reservoir model (for 1000 years after injection stopped). CO₂ is injected in supercritical state with the rate of 100kt/year for one year. Due to the gravity convection, CO₂ dissolution in groundwater is greatly enhanced and gradually the supercritical CO₂ disappears.

https://www.jamstec.go.jp/es/jp/projec t/sangyou_report/H22_TAISEI_en.pdf

https://www.jamstec.go.jp/es/jp/projec t/sangyou_report/H25_TAISEI_en.pdf

Summary and Request

Summary

- SX-Aurora TSUBASA is suited for seismic imaging, reservoir simulation and carbon capture and storage applications
- SX-Aurora TSUBASA can deliver higher performance than x86 with same source program

Request

■ NEC is looking for more geoscience and energy applications that we can work on together with you

WANTED

- **†** Seismic applications (RTM, FWI, etc)
- **†** Reservoir simulation applications
- † Madagascar users
- **†** Carbon capture and storage applications
- **†** Geothermal applications
- **†** Any other geoscience or energy related applications

Looking forward to your feedback and mutual collaboration

Orchestrating a brighter world

